### Creating Amazing Scientific Visualization Tools with JavaFX 8



#### JavaOne 2013

(Sept. 22-26, 2013)

#### **Michael Hoffer**

G-CSC Goethe University Frankfurt





## **About Me**



Doing my PhD at the G-CSC, University of Frankfurt



Research interests: developing Visual Programming Concepts



Software Projects: VRL-Studio, VWorkflows, JFXtras

#### Twitter: @mihosoft

Web: mihosoft.eu





## Outline

- Why Choose JavaFX?
- **Introduction to Functions**
- **Creating a 2D & 3D Function Plotter**
- **Combining 2D & 3D Visualizations**
- **Loading and Visualizing 3D Geometries**
- - But it does move!
- **Visualizing Simulation Workflows**





## Why Choose JavaFX?

### **Explain current situation:**

### Swing+Java3D/OpenGL (not easy to integrate!) or SWT, Qt...

It's a zoo of different options...





## Why Choose JavaFX?

### **One To Rule Them All:**

JavaFX:

### 2D API (Controls, Charting API) and 3D API (Primitives, Meshes, Light,...)





## **Introduction To Functions**







## **Introduction To Functions**











### Introduction To GroovyShell for evaluating Expressions





#### Explaining LineChart API XYCharts.series() Axes, Ticks, CSS etc.





#### **Converting evaluated values to XYChart.Series()**

### Show the LineChart as child of a ScalableContentPane (from JFxtras)





### How to make the plot interactive?

## - add parameter sliders via binding (evaluates function and updates plot)

click on plot/line to see exact values





## Code / Demo

18 ctin mafgutini





Je ben sur Gulario



### Revisiting Function Evaluation (now with 2 Parameters)

Ein milli



## Explaining concept of representing geometries:

### Meshes, TriangleMesh, ...

. . .





## Short Introduction to scenes, lights & materials

## showing demo code that creates a basic scene with lights, persp. cam etc.





Adding the geometry that has been derived from the 3D function evaluator to the scene

Demo codes uses Window control from JFXtras/VWorkflows to show input & output (3D scene)





## Code / Demo

18 ctin mafgutini



## Combining 2D & 3D







## Combining 2D & 3D

Emphasize that 3D nodes provide 2D node API!

Use ray picking to select points in 3D geometry and plot value change over time with previously developed 2D plotter!





## Combining 2D & 3D

## Short Discussion on other possible use cases:

## selecting parts for defining simulation parameters...





## Code / Demo

18 ctin mafgutini



## **Loading & Saving Geometries**

### Starting with simple .txt format:

#nodes # triangles
node index node\_x node\_y node\_z

triangle\_index node\_index\_1 node\_index\_2 node\_index\_3



## **Loading & Saving Geometries**

### Explaining subset of .obj format

### example code can load simple models from .txt and .obj and save them as well (triangles)





## Code / Demo

18 ctin mafgutini



### **But It Moves**

### **Introduction to snapshot functionality**

#### **Creating images from 2D and 3D scenes**

### **Changing function prams over time!**





### **Simulation Workflow**

### Using prepared api (part of sample code) to create .mov file (uncompressed) by adding writable images as frames





### **Simulation Workflow**

#### Demonstrate full simulation example numerics code consists of ODE & PDE solver

examples are fully prepared (no in-depth code discussion due to time restrictions) they include all visualizations that have been previously developed

(no fear, no introduction to numerics)





### **Simulation Workflow**

### All numerics & visualization done with just one platform Java 8

### again, one to rule them all!





## Code / Demo

18 ctin mafgutini



# Thank you for your attention!





## **Q & A**

96 ctin muffetini

